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Abstract

A theoretical analysis of the active control of low-frequency radiated pressure from a finite cylindrical pressure hull is
presented. The control action is implemented through a Tee-sectioned circumferential stiffener driven by a pair of PZT
stack actuators. The actuators are located under the flange of the stiffener and are driven out of phase to produce a control
moment. This paper examines the effects of control actions, both structurally and acoustically, for a control moment
applied around the circumference of the hull. The model considered is a water-loaded finite stiffened cylindrical shell with
rigid ends caps. One end of the shell is excited by an axial force while the other end is free. Control action is achieved by
using the PZT actuators and stiffener to minimize the structural response and radiated pressure. It was found that the
control system was capable of reducing by approximately two-thirds of the radiated pressure for the first three axial modes.
Crown Copyright © 2007 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The work described in this paper is concerned with the active control of the structural response and sound
pressure radiation of a finite cylindrical shell subjected to an axial excitation.

Recently, the radiated pressure of a finite cylindrical shell in axisymmetric vibration has been investigated
by Tso and Jenkins [1]. In their study, they simulated the response of a submarine hull due to propeller
excitations as a water-loaded finite cylinder subjected to an axial force. Their model is developed for low-
frequency applications such as the blade tonal noise. The active control of vibration transmission in a
cylindrical shell has been studied by Pan and Hansen [2,3] using circumferential arrays of vibration control
actuators and sensors. Young [4] studied the active control of vibration of an air duct using an angled stiffener
and point forces. Tso and Kessissoglou [5,6] carried out an analysis of the active control of the first two
structural modes of a cylindrical shell using an axial force applied at the opposite end of a primary excitation
source. However, the amplitude of the axial force required was about the same order as the primary excitation,
making this method impractical for real maritime structures.

The work outlined in this paper is based on the sound pressure radiation model developed by Tso and
Jenkins [1] coupled with a novel active control technique where a control moment is applied to minimize the
structural response and radiated pressure. The control moment is applied by using a Tee-sectioned stiffener
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Nomenclature f primary force only
control moment only

c—f cylindrical shell response due to unit
primary force

c—m  cylindrical shell response due to unit
control moment

p—f plate-stiffener response due to unit pri-
mary force

List of superscripts
* complex conjugate

List of subscripts

p plate only 3 e . i

. cylindrical shell only p—-m  plate-stiffener response due to unit con
trol moment

e end plate only

combined with a pair of PZT stack actuators driven out of phase as shown in Fig. 1. Using this control
strategy, the combination of the stiffener and the actuators are capable of developing a control moment of
sufficient amplitude to enable the implementation of an effective control action.

2. Active control of displacement

There are two fundamental approaches considered in this paper for developing control strategies for the
active control of radiated pressure from a cylindrical shell, namely, displacement control and radiated pressure
control. This section describes the former approach while the latter approach is considered in the next section.

As a first approximation, the control action due to the stiffener and the stack actuators is replaced by a
circumferential line moment acting around a bulkhead as shown in Fig. 2. The inclusion of the bulkhead
demonstrates how the method of analysis may be applied to shells with structural discontinuities. A simplified
model of the pressure hull may then be considered as a structural junction with two cylindrical shells and a
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Fig. 1. Pressure hull showing primary force, control actuators and T-stiffener.
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Fig. 2. Pressure hull showing line moment and plate stiffener.
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circular plate. At the structural junction, both bending and in-plane waves are generated in the circular plate
due to motions of the cylinder. However, in the frequency range of interest, it is thought that the predominant
wave motion is bending and hence in-plane waves are ignored in the present analysis.

2.1. Analysis of the axisymmetric vibration of the pressure hull

2.1.1. Equation of motion of a cylindrical shell
The equation of motion for axisymmetric response of a ring stiffened cylindrical shell with fluid loading is
given by Junger and Feit [7] and Leissa [§8] as

[ d? 2(1 —v? d
L1 pro-(1=v) nd
X 01 Eh a dx
2 4 201 _ 12
ﬂi, %+A"(12 Vl)+a2[32d—4— LAV (I=vy)
a dx a ba /’l] dx P Elhl
[u. 0
= , 1
= o ()

where a is the radius of shell (m), 4, the cross-sectional area of stiffener (m?), b the stiffener spacing (m), E, the
Young’s modulus (N/m?), &, the shell thickness (m), m; the fluid loading parameter (kg/m?), m, the equivalent
distributed mass of the internal structure and on-board equipment (kg/m?), [32 = (h% /12a%), v, the Poisson’s
ratio, p; the mass per unit area of the stiffened shell (kg/m?), py the density of fluid (kg/m?) and o the circular
frequency (rad/s).

The complete solution of the cylindrical shell is

6
Ue = Wci Cie/lix/a (2)
i=1
and
6
We = Z Wcie;'ix/aa (3)
i=1
where A;, i = 1,2, ...,6 are the wave numbers. The amplitude ratios C;, i = 1,2, ...,6 are given by Tso and
Jenkins [1] as
U, —vi;
C=t= M 4
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Wave amplitudes W;, i = 1,2, ...,6 may be determined from the boundary conditions of the cylinder [1].

2.1.2. Egquation of motion of a circular plate in bending motion
The equation of motion of a circular plate in bending motion is given by Leissa [9] as

12p,0*(1 — v2)
# M}p — 0,

V4co,, + 5
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where E, is the Young’s modulus of plate (N/m?), h,, the plate thickness (m), r, the radius of plate (m), w, the
out-of-plane plate displacement (m), p, the density of plate (kg/m?) and v, the Poisson’s ratio of plate:

& 1d]2

V4= - =
drl% rpdr,

Laplacian operator for axisymmetric motion.
The solution to Eq. (7) may be obtained in terms of the Bessel functions:

Wp = Bl.]o(kprp) + B210(kprp)a (8)

where the plate bending wave number k, = [12pp(u2(1 — vj)/Ephj]l/“, Jo and I are Bessel function of the first

kind and modified Bessel functions of the first kind, respectively, and B; and B, are constants to be determined
from the boundary conditions. It is assumed that the circular plate does not impose any in-plane constraint on
the cylinder.

2.2. Expressions for forces and moments

Consider the structural junction between two cylinder segments (1) and (2) as shown in Fig. 3, the junction
forces and moments are given by Leissa [8,9] as

P (i) "’
Eh dw.
F= i () "
_ —Eh (d2wc> (11)
2(1—v)\dx? ) .
g <d3w,, 1w, 1 %) (12)
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Fig. 3. Junction forces and moments.
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and
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2.3. Solution of the dynamic response of the pressure hull

Referring to Figs. 3 and 2, the equilibrium conditions at x = x; require

FO+FD—FP =0,
F) - F9 =0,

MO MS) — M = M.,

where M, is the control moment.
The compatibility of junction displacements requires

0=

ul) = wib

>

WE,I) = w£2),
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The following boundary conditions are applicable to a finite cylinder with rigid end plates.
At x =0,
dwg,l) —0.
dx
2
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2ra Y 2ma di?
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where m® and m'™ are the masses of the end plates at x = 0 and L, respectively.
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The end conditions of the cylinder (Egs. (22)—(27)), together with the boundary conditions for a cylinder/
plate junction (Egs. (14)—(21)), provide sufficient conditions for the solution of the cylindrical hull and end
plates.

If the pressure hull is excited by a sinusoidal axial force of amplitude F located at x = 0, the flexural
displacement w.(x) at any location x may be expressed as

W) = Fire_p (), (28)

where w._, is the flexural displacement per unit axial force.
Similarly, if a line moment of amplitude M is applied at x = x;, the flexural displacement due to this
moment is

Wwe(x) = Mwe_p(x), (29)

where w._,, is the flexural displacement per unit line moment.
The total flexural displacement at x due to the primary and control excitations together is then

we(x) = ch—f(x) + Mwe_p(x). (30)

The optimal moment which minimizes the flexural displacement at x = x, is obtained from Eq. (30) by
setting w.(x,) to be zero, i.c.,

M= e () 31)
We—m(Xe)
Similarly, the optimal moment which minimizes the axial displacement at x, is
M= et (32)
u(f*ﬂl(xe)

where u._,is the axial displacement per unit primary force and u._,, is the axial displacement per unit control
line moment.

The optimal control moment for minimizing both radial spectral displacement (defined in Eq. (37) in
Appendix A) and axial displacement may be found by evaluating the sum of the squares of each displacements
and setting the result to zero.

3. Active control of sound radiation

The total sound radiation of a pressure hull may be considered as the sum of the pressure due to the end
plates and the radial motion of the cylinder (see Appendix A). The pressure due to the radial motion of the
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Fig. 4. Axial response of the pressure hull. —, axial displacement at x = 0, - - -, axial displacement at x = L.
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primary and control excitation together is
pc(Ra 0) = ch—f(R7 0) + Mpc—m(R: 0)> (33)

where p._,is the pressure due to a unit primary force excitation and p._,, is the pressure due to a unit control
moment excitation. Similarly, the pressure due to the end plates can be shown as

pe(Rs 0) = Fpe—f(R9 9) + Mpe—m(R’ 9)7 (34)

(b)

270

Fig. 5. Radiated pressure: (a) at first mode; (b) at second axial mode; (c) at third axial mode. —, total pressure; - - -, radiation due to end
plates. In this and other figures, the radiated pressure is plotted in polar coordinate with angle in degrees and radius in Pascals.
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where p,_yis the axial pressure due to a unit primary force excitation and p,_,, is the axial pressure due to a
unit control moment excitation.
The total sound radiation then becomes

2n 2n
P = / po(R.0)d0 + / po(R0)d0
0 0

2n 2n
=F [pc—f(R: 0) +pe—f(R: 0)] do +M [pc—m(Ra 0) +pe—m(R7 0)] do. (35)
0 0

The optimal control moment to minimize the total radiated pressure is obtained by determining the
derivatives of Eq. (35) with respect to the control moment and setting the result to zero. The optimal control
moment may then be expressed as

_FgmhﬂK@+m4mﬂM%wmﬁ%HbMR®Fw.

M= 21
0 |pc—m(R5 9) +pe—m(R’ 9)|2 d@

(36)
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Fig. 6. Axial displacement with the control moment (line moment) using axial displacement as the cost function: (a) at first mode; (b) at
second axial mode; (c) at third axial mode. —, uncontrolled; - - -, controlled.
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4. Numerical results

The numerical results presented in this section were based on a steel pressure hull of 7m diameter, 60 m
length and a shell thickness of 25 mm. A primary excitation force of 1 N amplitude is applied at x = 0m and
the control moment at x = 20 m. The sound pressure level at a distance of 1000 m is used as the error signal for
sound radiation control. Additional results are presented in Section 4.3 for other control source locations.

Fig. 4 shows the axial displacement at both ends of the pressure hull as a function of frequency. In order to
obtain realistic amplitudes near the resonant frequency of the hull, a structural loss factor of 0.02 is used in the
calculations. It can be seen that the first three axial modes are approximately 12, 24 and 35 Hz.

Fig. 5 shows the total radiated pressure for the first three axial modes. The radiated pressure due to the end
plates only is also shown in the figures for comparison. The figures show that for the first and third modes, the
radiated pressure due to the radial motion of the cylinder is out of phase with that of the axial motion,
resulting in a reduction of the total radiated sound pressure. It is therefore important to account for the phase
difference between the axial motion of the end plates and the radial motion of the cylinder in the analysis of
cylinder radiation.
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Fig. 7. Radial displacement with the control moment (line moment) using axial displacement as the cost function: (a) at first mode; (b) at
second axial mode; (c) at third axial mode. —, uncontrolled; - - -, controlled.
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4.1. Minimization of displacement

The first control strategy to be investigated in this section is the minimization of displacement at the end
plates. Fig. 6 shows the controlled and uncontrolled mode shapes of the first three axial hull modes. The phase
relationship between the ends of the pressure hull can clearly be observed. The results demonstrate that the
axial displacement at the ends of the hull is reduced significantly for the first three axial modes.

However, in order to minimize the axial motion of the end plates, the control actuators have to induce a
significant radial motion on the cylinder. Fig. 7 shows the controlled and uncontrolled radial displacement for
the first three hull modes. With the application of control actions, large radial displacements at the actuator
location can be observed for the first two modes (see Fig. 7(a and b)), and to a lesser extent for the third mode
(see Fig. 7(c)).

The effect of the controlled radial displacement (presented in Fig. 7) on the total radiated pressure is shown
in Fig. 8. It can be seen that, for the first two axial modes (Fig. 8(a and b)), the total radiated pressure with
displacement control is very much higher than the uncontrolled case due to the large radial displacements. For
the third axial mode (Fig. 8(c)), the total radiated pressure with displacement control is reduced, as the small
increase in radial displacement is more than compensated by the significant reduction of axial displacement
(see Figs. 6(c) and 7(c)).

Another cost function that has been evaluated in this section is the radial spectral displacement of the
cylindrical shell (see Eq. (37) in Appendix A for an expression of the radial spectral displacement). Fig. 9
shows the controlled and uncontrolled radiated pressure for the first three axial modes. It can be seen that the
radiated pressure is increased with the application of control action for the first axial mode while no significant
difference is observed for the second and third modes. The results suggest that the control action in itself will

270

Fig. 8. Total radiated pressure with the control moment (line moment) using axial displacement as the cost function: (a) at first mode; (b)
at second axial mode; (c) at third axial mode. —, uncontrolled; - - -, controlled.
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270

Fig. 9. Total radiated pressure with the control moment (line moment) using radial spectral displacement as the cost function: (a) at first
mode; (b) at second axial mode; (c) at third axial mode. —, uncontrolled; - - -, controlled.

introduce a radial displacement which renders this control strategy ineffective. Also, a radial motion will give
rise to an axial displacement and further reduces the effectiveness of the control action.

Finally, the sum of the axial displacement and the radial spectral displacement is used as the cost function
for minimization. Fig. 10 shows the radiated pressure for the controlled and uncontrolled cases. In general,
this control strategy is not effective in controlling the radiated pressure, as can be seen from the results for the
first and second axial modes. This is partially due to the coupling between the radial and axial displacements
of the cylinder which results in a significant pressure radiation from these motions. Also, this cost function
does not include the areas of the cylindrical shell and the end plates which may have an effect on the
appropriate weighting and hence the level of reduction of the radiated pressure.

The results presented in this section suggest that a different cost function is warranted to account for the
axial modes of interest.

4.2. Minimization of radiated pressure

The cost function to be minimized in this control strategy is the total radiated pressure. This method of
control may be implemented by an array of accelerometers to measure the radial motion of the shell in order
to determine the component of radiated pressure due to the radial motion (refer to the acceleration
measurement system in Ref. [4]). The component of radiated pressure due to axial motion may be determined
by measuring the displacement of the end plates.

Fig. 11(a) shows the controlled and uncontrolled total radiated pressure at the first axial mode by
minimizing the radiated pressure at 90° from the cylinder axis, where the control action is more effective in this
orientation. It can be observed that approximately two-thirds of the total pressure has been reduced.
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270

Fig. 10. Total radiated pressure with the control moment (line moment) using the sum of mean squared radial spectral displacement and
axial displacement as the cost function: (a) at first mode; (b) at second axial mode; (c) at third axial mode. —, uncontrolled; - - -,
controlled.

Fig. 11(b and c) shows the results for the second and third modes, respectively. The results were obtained by
minimizing the sum of the total radiated pressure from 0° to 180°. Again, a significant reduction of radiation
pressure can be observed.

By comparing the results between Figs. 10 and 11, it can be seen that the radiated pressure is a more
effective cost function than displacement for this control configuration.

The moment location and the ratio between the amplitude of the control moment and primary force (see
Eq. (36)) are presented in Table 1. It shows that the amplitude of the control moment is much lower than the
primary force for the first three axial modes. To put these figures into perspective, a typical PZT stack can
generate a pushing force of 30 kN. By placing the stacks under a 200 mm flange (with a moment arm of
100 mm), it translates to a point moment of 3kNm. If the PZT stacks are spaced at 500 mm interval around
the circumference of the hull, it will give an equivalent line moment of 6 kN m/m. Referring back to Table 1, a
control moment of 6 kN m/m is capable of controlling a primary force of 40 kN for the first axial mode which
is sufficient for marine applications. Based on the specifications from manufacturers of the stack actuator and
power amplifier, the electrical power requirement for such a control system would be approximately 5kW,
which is feasible for installation in marine vessels.

4.3. Effect of stiffener and control actuator location

In practice, it may not be feasible to locate the control actuators at a specific position along the
cylindrical shell, say at /3, and a physically convenient location may not be optimum for the attenuation of
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Fig. 11. Total radiated pressure with the control moment (line moment) using pressure as the cost function: (a) at first mode; (b) at second
axial mode; (c) at third axial mode. —, uncontrolled; - - -, controlled.
Table 1

Line moment location and moment/force ratio

Axial mode Location of moment (m) Moment/force ratio
First mode 20 0.15

Second mode 20 0.16

Third mode 20 0.008

noise radiation. This section explores the effect of locating the control actuator at other positions on noise
radiation.

In order to implement an effective control of the total radiated pressure, calculations were conducted with
actuator locations at 1 m increments along the length of the cylindrical shell. It was found that the control
actuator should be located close to the primary source for optimum attenuation. This enables an effective
control of the motion at the other end without causing an excessive radial motion.

Table 2 shows the locations of the control actuator and the amplitude ratio between the control moment
and primary force. Again, the amplitude of the control moments is much lower than the primary force.

Fig. 12 shows the total radiated pressure of the first three modes that corresponds to the control actuator
locations as shown in Table 2. The radiation pattern of the second mode (Fig. 12(b)) differs considerably from
Fig. 11(b) due to the difference in location of the actuator. Also, a larger attenuation is achieved with the
control moment located close to the excitation source. Both the first and third modes (Fig. 12(a and c)) show
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Table 2
Line moment location and moment/force ratio with the control moment close to the excitation source

Axial mode Location of moment (m) Moment/force ratio
First mode 0.25 0.13
Second mode 0.25 0.12
Third mode 0.25 0.007
(a)

180f-+f---i-)

270

270

Fig. 12. Total radiated pressure with the control moment (line moment) close to the excitation source using pressure as the cost function:
(a) at first mode; (b) at second axial mode; (c) at third axial mode. —, uncontrolled; - - -, controlled.

similar reduction in radiated pressure compared with Fig. 11(a and c). It seems that the second mode is more
sensitive to the control moment location for this control configuration.

4.4. Comparison between line moment control and point moment control

The implementation of the control system requires a series of point moments to be applied around the
circumference of the hull. To investigate the effect of replacing a line moment with a series of point moments,
calculations were performed for the total radiated pressure of the first three modes with the actuator locations
shown in Table 2, but in this case the system is controlled by three evenly spaced equivalent point moments.
Fig. 13 presents the results of these calculations. It can be seen that the results are very similar to those of line
moment control and therefore in practical terms, point moments may be used without reducing the
effectiveness of the control action.
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270

Fig. 13. Total radiated pressure with the control moment (three point moments) close to the excitation source using pressure as the cost
function: (a) at first mode; (b) at second axial mode; (c) at third axial mode. —, uncontrolled; - - -, controlled.

5. Conclusions

The radiated pressure of a cylindrical shell subjected to an axial excitation may be reduced by approximately
two-thirds using an active control moment. The amplitude of the control moment is small compared with the
excitation force and may be implemented by a series of PZT stack actuators.

The most effective cost function for the control system is the radiated pressure. This control strategy
requires a number of sensors to measure the structural response of the pressure hull and an accurate model to
predict the radiated noise. An alternative control strategy is the minimization of the axial displacement which
may reduce the radiated pressure for higher order axial modes. However, at the first and second modes, the
control of axial motion may lead to a higher overall radiated pressure due to the large radial motion. This
finding indicates that the phasing between the radial and axial motions is a significant factor in the application
of active control to reduce the radiated pressure.

Appendix A
A.1. The radiation of sound from the cylindrical surface

The far field pressure due to axisymmetric vibration of a cylindrical shell shown in Fig. 14 is given by Junger
and Feit [7] and later used by Tso and Jenkins [1]:

jprerte®Rw (ky cos 0)

(R, 0) =
PR ) = e R sin 0H (eya sin 0)°

(37)
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Fig. 14. Finite cylindrical shell with semi-infinite baffles.

where w.(k; cos 0) is spectral displacement evaluated at k; cos 0 and is defined as

L)2 '
We(kf Ccos 0) = / WC(X)E:_ka cos Ox dx.
—L)2

H (ks sin0) is the Hankel function of order 1.
A.2. Radiation from the end plates

The pressure field due to the rigid end plates given by Tso and Jenkins [1] is
Po(R) = Bp1 B,y + By By, (38)

where v and v, are the displacements of two end plates, and B,;, By, B, and B, are given by Tso and Jenkins
[1] as

- |
By = py |:]i_f(€]k/»a -1 (jk/' — E) cos 0 — 1]’ (39)
- |
By =py [/i(e]k/“ -1 (ka — R) cos 0 + 1] , “0)
f
—aJi(kra sin G)ejkf[R—(L/2)cos 0]
o i ’ 41
1 2Rky sin 0 A1)
_aJl(kfa sin Q)ejk/‘[R+(L/2) cos 0]
b i ' 42
’ 2Rky sin 0 (42)
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